

2

Fungicides may directly or indirectly impact bees

- Do not target insects but may harm brood & adults
- Can kill beneficial fungi & disrupt conversion of pollen (↓nutritional value or absorption)
- May exhibit delayed effects
- May synergistically interact with insecticides and 个toxicity of combination
- Used during bloom for many crops

- systemic action: translocates to all parts of the plant (nectar/pollen)

Active ingredient:

Trade Name(s)

Imidacloprid	Merit, Marathon, Provado, Admire
Clothianidin	Poncho, Arena, Celero
Thiamethoxam	Centric, Cruiser, Flagship
Dinotefuran	Safari, Starkle, Abarin
Thiacloprid	Calypso, Bariard, Destroyer
Acetamiprid	Transport, Assail, Chipco

E	Estimating exposure: Imidacloprid				
	Арр	Residue levels	Reference		
	Seed	0.6-1.9 ppb sunflower & corn (pollen); canola (nectar)	Schmuck et al. 2001 Bonmatin et al. 2005 Scott-Dupree & Spivak 2001		
	Soil	3-10 ppb purple tansy (nectar)	Wallner et al. 1999		
	Soil	15-27 ppb buckwheat (nectar)	Krischik et al. 2007		
	Water	30-80 ppb pumpkin (pollen); 4-12 ppb pumpkin (nectar)	Dively & Hooks 2010		
	Soil	27-850 ppb rhododendron (blossom)	Doering et al. 2004		
	Soil	1,038-2,816 ppb cornelian cherry (blossom)	Doering et al. 2005		

Estimating exposure: Imidacloprid				
<10	20 40 60 80 100 <mark>200</mark>	400 800 1600+		
Expos rates (ure Seed-applied Agricultural	Urban landscape		
Арр	Residue levels	Reference		
Seed	0.6-1.9 ppb sunflower & corn (pollen); canola (nectar)	Schmuck et al. 2001 Bonmatin et al. 2005 Scott-Dupree & Spivak 2001		
Soil	3-10 ppb purple tansy (nectar)	Wallner et al. 1999		
Soil	15-27 ppb buckwheat (nectar)	Krischik et al. 2007		
Water	30-80 ppb pumpkin (pollen); 4-12 ppb pumpkin (nectar)	Dively & Hooks 2010		
Soil	27-850 ppb rhododendron (blossom)	Doering et al. 2004		
Soil	1,038-2,816 ppb cornelian cherry (blossom)	Doering et al. 2005		

Measurements (~ 3 weeks): queen egg-laying rate (average # eggs laid) queen activity (average distance traveled) queen inactivity (time spent resting) worker hygienic behavior (in-hive activity) worker foraging (1 min counts 2x day) **Dost-experiment assessment (after 23 days):**brood production (eggs, larvae, pupae) & pattern nectar & pollen stores adult population

Hygienic Behavior Assay

Rate of removal of dead brood is correlated with rate of removal of diseased and mite infested brood

Integrating the science

Early spring management:

- Colonies can be small coming out of winter
- "split" or divide over-wintered colonies in the spring
- purchase "packages" (7,000-10,000 bees) to restock dead colonies

Recommendation:

- reduce exposure risks in the early spring when honey bee colonies are at their smallest population size and when queens are more vulnerable.
- Plant more early spring forage to dilute potential contaminated sources

What does it all mean?

- It's complicated and more research is needed
- Effects are wide ranging and linkages incomplete
- Weight-of-evidence is greater for individual-level effects when exposure levels are high (ex. dusts & foliar sprays) and soil drench? chemgation?
- Exposure studies are desperately needed to relate effects studies

- Early spring exposures represent greater risks to honey bee queens and bumble bee queens (dust)

Has solitary phase

What about solitary bees?

- Can we identify other time points/conditions that put pollinators at greater risk? *To be continued......*

References
Ankley, G.T., R.S. Bennett, R.J. Erickson, D.J. Hoff, M.W. Hornung, R.D. Johnson, D.R. Mount, J.W. Nichols, C.L. Russom, P.K. Schmieder, J.A. Serrrano, J.E. Tietge, and D.L. Villeneuve. 2009. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry 0999 (12): 1-12.
Bonmatin, J.M., P.A. Marchand, R. Charvet, I. Moineau, E.R. Bengsch, and M.E. Colin. 2005. Quantification of imidacloprid uptake in maize crops. J. Aq. And Food Chem. 53:5336-5341.
Dively, G. and C. Hooks. 2010. Use patterns of neonicotinoid insecticides on Cucurbit crops and their potential exposure to honey bees. Progress Report. Strategic Agricultural Initiative Grants Program. EPA Region III.
Doering, J., C. Maus, and R. Schoening. 2004. Residues of Imidacloprid WG 5 in blossom and leaf samples of <i>Rhododendron</i> sp. (variety Nova Zambia) after spil treatment in the field Application: 2003 sampling: 2003 and 2004. Bayer CropScience AG, Bappd
G201806.
Doering, J., C. Maus, and R. Schoening. 2005. Residues of imidacloprid WG 5 in blossom and leaf samples of Amelanchier sp. after soil treatment in the field. Application: 2003. sampling: 2004 and 2005. Baver CropScience AG. Report No. G201799.
Klein, AM., B. E. VaissiÄ"re, et al. (2007). "Importance of pollinators in changing landscapes for world crops." Proceedings of the Royal Society P: Pickeing Science 774/1409): 202 212
Krischik, V., Landmark, A., Heimpel, G. 2007. Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding <i>Anagyrus pseudococci</i>
(Girault) (Hymenoptera: Encyrtidae) J. Environ. Entomol. 36(5): 1238-1245. OECD (2013) Organisation for Economic Co-operation and Development: Guidance document on developing and assessing adverse outcome
pathways. Series on testing and assessment No 184. ENV/JM/MONO(2013)6
Park O.W. (1937) Testing for resistance to American fourbrood in noneybees, J. Econ. Entomol. 30, 504–512. Rortais, A., G. Arnold, MP. Halm, F. Touffet-Briens (2005). "Modes of honeybees exposure to systemic insecticides: estimated amounts of
contaminated pollen and nectar consumed by different categories of bees." Apidologie 36: 71-83.
Rothenbuhler W (1964) Behavior genetics of nest cleaning behavior in honeybees. I. Response of four inbredlines to disease killed brood. Animal Behav 12, 578-583
Schmuck, R., R. Schoning, A. Stork, and O. Schramel. 2001. Risk posed to honeybees (<i>Apis mellifera</i> L.,Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest. Management Science 57:225-238.
Smart, M.D. and W.S. Sheppard. 2011. Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). J. Invert. Path., doi:
10.1016/JJp2011.09.009 Soleen A. F. J. Lennerich K. Rennich D. Caron B. Rose, J.S. Pettis, M. Henson, J. T. Wilkes, M. Wilson, J. Stitzinger, K. Lee, M. Andree
R. Snyder and D. vanEngelsdorp. 2013. A national survey of managed honey bee 2011-12 winter colony losses in the United
States: results from the Bee Informed Partnership. J. Api. Res.52(2): 44-53.
Spivak, M. 1996. Honey bee hygienic behavior and defense against <i>Varroa jacobsoni. Apidologie 27: 245-260.</i>
Stroeymeyt, N., Pérez, B.C., Cremer, S. 2014. Organisational immunity in social insects. Science Direct . doi:10.1016/j.cois2014.09.001
Thompson, n. M., and L. V. Hult (1999). Extrapolating from honeybees to bumble bees in pesticide risk assessment. Ecotoxicology 8: 147-166.
Toulourins, A. (2013) A package indigee, a generalized estimating equations solver for multinomial responses. S oftat Solver 0(5): 1-14.
US EPA (2014). Guidance for assessing pesticide risks to bees. Office of Pesticide Programs United States Environmental Protection Agency.
Washington, D.C.; Health Canada Pest Management Regulatory Agency, Ottawa, ON Canada; California Department of Pesticide
Regulation, Sacramento, CA.

